A quick survey on even-hole-free graphs

Dewi Sintiari

LIP, ENS de Lyon, France

April 14, 2021

Dewi Sintiari (LIP, ENS de Lyon, France) A quick survey on even-hole-free graphs

≣▶ ◀ ≣▶ Ξ ∽ Q ⊂ April 14, 2021 1 / 28

• • • • • • • • • • • •

Even-hole-free graphs (or ehf graphs)

- *H* is an induced subgraph of *G* if *H* can be obtained from *G* by *deleting vertices*
- G is *H*-free if no induced subgraph of G is isomorphic to H
- When \mathcal{F} is a family of graphs, \mathcal{F} -free means H-free, $\forall H \in \mathcal{F}$
- Even hole: induced cycle of even length (i.e. no chord in the cycle)
- G is even-hole-free means G does not contain an even hole
- Some examples: chordal graphs, complete graphs

Figure: Theta and prism

Remark. (Theta, prism)-free is a superclass of even-hole-free

Motivation

Perfect graphs

- G is perfect if $\chi(H) = \omega(H)$, for any H induced subgraph of G
- Strong Perfect Graph Theorem: *G* is perfect iff *G* contains no *odd hole* & no *odd antihole*

Even-hole-free graphs

• even-hole-free = no even hole & no antihole of length \geq 6

Decomposition of even-hole-free graphs

Theorem (da Silva & Vušković)

A connected even-hole-free graph is either basic, or it has a 2-join or a star cutset.

Basic graphs: cliques, holes, long pyramids, nontrivial basic graphs

Dewi Sintiari (LIP, ENS de Lyon, France) A quick survey on even-hole-free graphs

• A sort of dichotomy between "even-hole-free graphs" and "perfect graphs"

	ehf graphs	Perfect graphs
Structure	"Simpler"	More complex
Polynomial $lpha$, χ	?	YES

• Better understanding of the structure of even-hole-free graphs

Treewidth

Tree decomposition

AXIOMS

- 1. Every vertex is in a bag
- 2. Every edge is in a bag
- 3. $\forall v \in V(G)$, the support of v forms a subtree

- Treewidth of G (or tw(G)) measures how close G from being a tree
- Tree decomposition of G: "gluing" the pieces of subgraphs of G in a tree-like fashion (a tree decomposition resembles "fat tree" with nodes represented as "bags" of vertices)
 - ${\scriptstyle \bullet}\,$ width of ${\cal T}=$ the size of the largest bag 1
 - treewidth of G: width of the optimal tree decomposition of G

Treewidth

Tree decomposition

AXIOMS

- 1. Every vertex is in a bag
- 2. Every edge is in a bag
- 3. $\forall v \in V(G)$, the support of v forms a subtree

- Treewidth of G (or tw(G)) measures how close G from being a tree
- Tree decomposition of G: "gluing" the pieces of subgraphs of G in a tree-like fashion (a tree decomposition resembles "fat tree" with nodes represented as "bags" of vertices)
 - width of T = the size of the largest bag 1
 - treewidth of G: width of the optimal tree decomposition of G

Many graph optimization problems that are NP-hard become tractable on bounded treewidth graphs

Theorem (Courcelle, 1990)

Every graph property definable in the monadic second-order logic (MSO) formulas can be decided in linear time on class of graphs of bounded treewidth.

Some graph problems expressible in MSO:

• maximum independent set, maximum clique, coloring

Treewidth of even-hole-free graphs

Observation: since complete graph is ehf, the treewidth of the class is unbounded

- When $\textit{planar} \rightarrow \textit{tw} \leq 49 \; [silva, da Siva, Sales, 2010]$
- Pan-free $ightarrow tw \leq 1.5 \omega(G) 1 \; [ext{Cameron, Chaplick, Hoàng, 2015}]$
- $K_3 ext{-free} o tw \leq 5$ [Cameron, da Silva, Huang, Vušković, 2018]
- Cap-free ightarrow $tw \leq 6 \omega(G) 1$ [Cameron, da Silva, Huang, Vušković, 2018]

Figure: Triangle, pan, and cap

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ehf graphs of unbounded "width"

Diamond-free ehf has unbounded *rank-width* (implies unbounded treewidth) [Adler, Le, Müller, Radovanović, Trotignon, Vušković, 2017]

Figure: A diamond-free ehf graph of large rank-width; it contains large clique

Question: What if the clique size is bounded?

- Recall: ehf graphs with $\omega=2$ have treewidth at most 5. What about $\omega=3?$
- Cameron, Chaplick, and Hoáng (2018) ask the following: Is the treewidth of ehf graph (in general) bounded by a function of its max clique size?

< ロト < 同ト < ヨト < ヨト

- Recall: ehf graphs with $\omega=2$ have treewidth at most 5. What about $\omega=3?$
- Cameron, Chaplick, and Hoáng (2018) ask the following: Is the treewidth of ehf graph (in general) bounded by a function of its max clique size?
 - S., Trotignon (2019): Ehf graphs with no K₄ can have arbitrarily large treewidth.
 - So, bounded clique size does not imply bounded treewidth.

Ehf graphs of unbounded treewidth

• A family of K_4 -free graphs with arbitrarily large tw

< □ > < □ > < □ > < □ > < □ > < □ >

Theta-free graphs and even-hole-free graphs

- A theta is a graph induced by three paths s.t. any two of them induce a hole.
- Theta-free graphs is a superclass of even-hole-free graphs.

12/28

center

$G(\ell, k)$, with $\ell = 2$ and k = 4

April 14, 2021 13 / 28

3

イロト イポト イヨト イヨト

 L_0

$$G(\ell, k)$$
, with $\ell = 2$ and $k = 4$

April 14, 2021 13 / 28

3

(日) (四) (日) (日) (日)

 $G(\ell, k)$, with $\ell = 2$ and k = 4

Dewi Sintiari (LIP, ENS de Lyon, France) A quick survey on even-hole-free graphs

April 14, 2021 13 / 28

• • • • • • • • • •

 $G(\ell, k)$, with $\ell = 2$ and k = 4

April 14, 2021 13 / 28

• • • • • • • • • •

 $G(\ell, k)$, with $\ell = 2$ and k = 4

E▶ 《 Ē▶ Ē ∽ QQC April 14, 2021 13 / 28

• • • • • • • • • •

 $G(\ell, k)$, with $\ell = 2$ and k = 4

April 14, 2021 13 / 28

э

Image: A match a ma

 $G(\ell, k)$, with $\ell = 2$ and k = 4

April 14, 2021 13 / 28

-

3

(日)

 $G(\ell, k)$, with $\ell = 2$ and k = 4

April 14, 2021 13 / 28

э

Image: A match a ma

 $G(\ell, k)$, with $\ell = 2$ and k = 4

Dewi Sintiari (LIP, ENS de Lyon, France) A quick survey on even-hole-free graphs

∃ → April 14, 2021 13/28

3

(日)

 $G(\ell, k)$, with $\ell = 2$ and k = 4

April 14, 2021 13 / 28

3 N 3

(日)

Ehf graphs of unbounded treewidth

Bounded clique size does not imply bounded treewidth

• A family of K_4 -free graphs with arbitrarily large tw

< (17) > < (27 >)

A bound on the treewidth of layered wheels

Theorem (S., Trotignon (2019))

The treewidth of layered wheel is in $O(\log(n))$ where n is the vertex size.

< □ > < □ > < □ > < □ >

A bound on the treewidth of layered wheels

Theorem (S., Trotignon (2019))

The treewidth of layered wheel is in $O(\log(n))$ where n is the vertex size.

Conjecture

• There exists a constant c such that for any (theta, triangle)-free graph G, we have

$$tw(G) \leq c \log |V(G)|.$$

• Idem for K₄-free ehf graph.

- For k ≥ 1, a (theta, triangle, S_{k,k,k})-free graph G has treewidth at most O(k⁶).
- For $k \ge 1$, an (even hole, pyramid, K_t , $S_{k,k,k}$)-free graph G has treewidth at most $\mathcal{O}(t^{10}k^9)$.

 $S_{k,k,k}$ k = 5 pyramid

くぼう くほう くほう しゅ

Another observation from layered wheels

Even-hole-free graphs with no K_4 have unbounded treewidth

- Our construction which certifies this contains large clique minor
- It also contains vertices of high degree

Are these two conditions necessary?

Another observation from layered wheels

Even-hole-free graphs with no K_4 have unbounded treewidth

- Our construction which certifies this contains large clique minor
- It also contains vertices of high degree

Are these two conditions necessary? YES!

Another observation from layered wheels

Even-hole-free graphs with no K_4 have unbounded treewidth

- Our construction which certifies this contains large clique minor
- It also contains vertices of high degree

Are these two conditions necessary? YES!

- Even-hole-free graphs with no clique minor have bounded treewidth [Aboulker, Adler, Kim, S., Trotignon, 2020]
- Even-hole-free graphs of bounded degree have bounded treewidth [Abrishami, Chudnovsky, Vušković, 2020]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020) Even-hole-free graphs with no H-minor for some graph H have bounded treewidth. (This is actually proven for (theta, prism)-free graphs.)

- This provides another proof that planar ehf graphs have bounded treewidth.
- For the proof, we develop an "induced wall theorem" for graphs excluding fixed minor.
- From this, we derive that ehf graphs excluding fixed minor have bounded treewidth.

Theorem (Induced wall theorem for graphs excluding *H*-minor) If *G* is *H*-minor-free with $tw(G) \ge f_H(k)$, then *G* contains a $(k \times k)$ -wall or the line graph of a chordless $k \times k$ -wall as an induced subgraph.

Figure: A (3×3) -wall and the line graph of chordless (3×3) -wall

Even-hole-free graphs with no H-minor

Theorem (Fomin, Golovach, Thilikos, 2011)

For every H, there exists a constant $c_H > 0$ and an integer k s.t. for every connected H-minor free graph G with $tw(G) \ge c_H \cdot k^2$, G contains either Γ_k or Π_k as a contraction.

Figure: Γ_6 and Π_6

Conjecture (Aboulker, Adler, Kim, S., Trotignon, 2020) Even-hole-free graphs with bounded degree have bounded treewidth.

We prove the following cases:

- Subcubic ehf graphs have treewidth at most 3
 - Approach: a full structure theorem for subcubic (theta, prism)-free graphs (every graph is either simple or it has a "nice" separator which yields boundedness on the treewidth).
- Pyramid-free ehf graphs of degree ≤ 4
 - Approach: a combination of structural properties to show K₆-minor-freeness.
 - tw(G) ≤ f_{K₆}(3), with f as in the induced grid theorem.

Figure: Pyramid

- 4 回 ト 4 ヨ ト 4 ヨ ト

Structure theorem of subcubic even-hole-free graphs

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)

Let G be a (theta, prism)-free subcubic graph. Then either:

- G is a basic graph; or
- G has a clique separator of size at most 2; or
- G has a proper separator.

Figure: Basic graphs and proper separator

Treewidth of even-hole-free graphs (a proof)

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020) Subcubic even-hole-free graphs have treewidth \leq 3.

Sketch of proof.

- Every basic graph has treewidth at most 3.
- "Gluing" along a clique and proper gluing preserve treewidth to be \leq 3.

Dewi Sintiari (LIP, ENS de Lyon, France) A quick survey on even-hole-free graphs

Tw of (even hole, pyramid)-free graphs of max degree 4

Recall that we prove the following:

Theorem (Aboulker, Adler, E. Kim, S., Trotignon, 2020)

Every (even hole, pyramid)-free graph of maximum degree 4 has treewidth $< f_{K_6}(3)$.

- f is the bound given in the 'induced grid theorem'
- The core of the proof: If G is (even hole, pyramid)-free graph of maximum degree at most 4, then G contains no K_6 -minor.

Theorem (S., Trotignon, 2021+)

(Even hole, pyramid)-free graphs of max degree 4 have treewidth \leq 4.

Sketch of proof. Similar to the subcubic case, with more basic graphs.

Image: A matrix a

The "bounded degree \Rightarrow bounded treewidth" conjecture has been proven! (using another technique: balanced separator)

Theorem (Abrishami, Chudnovsky, Vušković, 2020)

Ehf graphs of bounded degree have bounded treewidth. (This is actually proven for a superclass of ehf graphs.)

Motivation: grid-minor theorem of Robertson and Seymour There is a function f such that if tw(G) > f(k), then G contains (as an induced subgraph) one of the following:

- a subdivision of a $(k \times k)$ -wall
- line graph of a subdivision of a $(k \times k)$ -wall
- a vertex of degree at least k

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

P. Aboulker, I. Adler, E. J. Kim, N. L. D. Sintiari, and N. Trotignon. On the tree-width of even-hole-free graphs. *CoRR*, abs/2008.05504, 2020.

M. Pilipczuk, N. L. D. Sintiari, S. Thomassé, and N. Trotignon.

(Theta, triangle)-free and (even hole, K_4)-free graphs. Part 2 : A bound on treewidth.

CoRR, abs/1906.10998, 2019.

N. L. D. Sintiari and N. Trotignon.

(Theta, triangle)-free and (even hole, K₄)-free graphs. Part 1 : Layered wheels. *CoRR*, abs/1906.10998, 2019.

The End

イロト イポト イミト イミト 一日