A quick survey on even-hole-free graphs

Dewi Sintiari
LIP, ENS de Lyon, France

April 14, 2021

Even-hole-free graphs (or ehf graphs)

- H is an induced subgraph of G if H can be obtained from G by deleting vertices
- G is H-free if no induced subgraph of G is isomorphic to H
- When \mathcal{F} is a family of graphs, \mathcal{F}-free means H-free, $\forall H \in \mathcal{F}$
- Even hole: induced cycle of even length (i.e. no chord in the cycle)
- G is even-hole-free means G does not contain an even hole
- Some examples: chordal graphs, complete graphs

Figure: Theta and prism

Remark. (Theta, prism)-free is a superclass of even-hole-free

Motivation

Perfect graphs

- G is perfect if $\chi(H)=\omega(H)$, for any H induced subgraph of G
- Strong Perfect Graph Theorem: G is perfect iff G contains no odd hole \& no odd antihole

Even-hole-free graphs

- even-hole-free $=$ no even hole $\&$ no antihole of length ≥ 6

Decomposition of even-hole-free graphs

Theorem (da Silva \& Vušković)
A connected even-hole-free graph is either basic, or it has a 2-join or a star cutset.

Basic graphs: cliques, holes, long pyramids, nontrivial basic graphs

Motivation

- A sort of dichotomy between "even-hole-free graphs" and "perfect graphs"

	ehf graphs	Perfect graphs
Structure	"Simpler"	More complex
Polynomial α, χ	$?$	YES

- Better understanding of the structure of even-hole-free graphs

Treewidth

Tree decomposition

AXIOMS

1. Every vertex is in a bag
2. Every edge is in a bag
3. $\forall v \in V(G)$, the support of v forms a subtree

- Treewidth of $G($ or $t w(G))$ measures how close G from being a tree
- Tree decomposition of G : "gluing" the pieces of subgraphs of G in a tree-like fashion (a tree decomposition resembles "fat tree" with nodes represented as "bags" of vertices)
- width of $T=$ the size of the largest bag - 1
- treewidth of G : width of the optimal tree decomposition of G

Treewidth

Tree decomposition

AXIOMS

1. Every vertex is in a bag
2. Every edge is in a bag
3. $\forall v \in V(G)$, the support of v forms a subtree

- Treewidth of $G($ or $t w(G))$ measures how close G from being a tree
- Tree decomposition of G : "gluing" the pieces of subgraphs of G in a tree-like fashion (a tree decomposition resembles "fat tree" with nodes represented as "bags" of vertices)
- width of $T=$ the size of the largest bag - 1
- treewidth of G : width of the optimal tree decomposition of G

Algorithmic use of treewidth

Many graph optimization problems that are NP-hard become tractable on bounded treewidth graphs

Theorem (Courcelle, 1990)
Every graph property definable in the monadic second-order logic (MSO) formulas can be decided in linear time on class of graphs of bounded treewidth.

Some graph problems expressible in MSO:

- maximum independent set, maximum clique, coloring

Treewidth of even-hole-free graphs

Observation: since complete graph is ehf, the treewidth of the class is unbounded

- When planar $\rightarrow t w \leq 49$ [silva, da Siva, Sales, 2010]
- Pan-free $\rightarrow t w \leq 1.5 \omega(G)-1$ [Cameron, Chaplick, Hoàng, 2015]
- K_{3}-free $\rightarrow t w \leq 5$ [Cameron, da Silva, Huang, Vuškovíć, 2018]
- Cap-free $\rightarrow t w \leq 6 \omega(G)-1$ [Cameron, da Silva, Huang, Vuš̌ković, 2018]

Figure: Triangle, pan, and cap

Ehf graphs of unbounded "width"

Diamond-free ehf has unbounded rank-width (implies unbounded treewidth) [Adler, Le, Müller, Radovanovié, Trotignon, Vušković, 2017]

Figure: A diamond-free ehf graph of large rank-width; it contains large clique

Question: What if the clique size is bounded?

Ehf graphs with no K_{4}

Recall: ehf graphs with $\omega=2$ have treewidth at most 5 . What about $\omega=3$?

Cameron, Chaplick, and Hoáng (2018) ask the following: Is the treewidth of ehf graph (in general) bounded by a function of its max clique size?

Ehf graphs with no K_{4}

Recall: ehf graphs with $\omega=2$ have treewidth at most 5 . What about $\omega=3$?

Cameron, Chaplick, and Hoáng (2018) ask the following: Is the treewidth of ehf graph (in general) bounded by a function of its max clique size?

- S., Trotignon (2019): Ehf graphs with no K_{4} can have arbitrarily large treewidth.
- So, bounded clique size does not imply bounded treewidth.

Ehf graphs of unbounded treewidth

- A family of K_{4}-free graphs with arbitrarily large tw

Theta-free graphs and even-hole-free graphs

- A theta is a graph induced by three paths s.t. any two of them induce a hole.
- Theta-free graphs is a superclass of even-hole-free graphs.

Layered wheel ((theta, triangle)-free) construction

center

L_{0}

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

Layered wheel ((theta, triangle)-free) construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

Layered wheel ((theta, triangle)-free) construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

Layered wheel ((theta, triangle)-free) construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

Layered wheel ((theta, triangle)-free) construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

Layered wheel ((theta, triangle)-free) construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

Layered wheel ((theta, triangle)-free) construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

Layered wheel ((theta, triangle)-free) construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

Layered wheel ((theta, triangle)-free) construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

Layered wheel ((theta, triangle)-free) construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

Ehf graphs of unbounded treewidth

Bounded clique size does not imply bounded treewidth

- A family of K_{4}-free graphs with arbitrarily large tw

A bound on the treewidth of layered wheels

Theorem (S., Trotignon (2019))
The treewidth of layered wheel is in $\mathcal{O}(\log (n))$ where n is the vertex size.

A bound on the treewidth of layered wheels

Theorem (S., Trotignon (2019))
The treewidth of layered wheel is in $\mathcal{O}(\log (n))$ where n is the vertex size.

Conjecture

- There exists a constant c such that for any (theta, triangle)-free graph G, we have

$$
t w(G) \leq c \log |V(G)|
$$

- Idem for K_{4}-free ehf graph.

Excluding more structure

- For $k \geq 1$, a (theta, triangle, $S_{k, k, k}$)-free graph G has treewidth at most $\mathcal{O}\left(k^{6}\right)$.
- For $k \geq 1$, an (even hole, pyramid, $K_{t}, S_{k, k, k}$)-free graph G has treewidth at most $\mathcal{O}\left(t^{10} k^{9}\right)$.

$$
S_{k, k, k} \quad k=5
$$

pyramid

Another observation from layered wheels

Even-hole-free graphs with no K_{4} have unbounded treewidth

- Our construction which certifies this contains large clique minor
- It also contains vertices of high degree

Are these two conditions necessary?

Another observation from layered wheels

Even-hole-free graphs with no K_{4} have unbounded treewidth

- Our construction which certifies this contains large clique minor
- It also contains vertices of high degree

Are these two conditions necessary? YES!

Another observation from layered wheels

Even-hole-free graphs with no K_{4} have unbounded treewidth

- Our construction which certifies this contains large clique minor
- It also contains vertices of high degree

Are these two conditions necessary? YES!

- Even-hole-free graphs with no clique minor have bounded treewidth [Aboulker, Adler, Kim, S., Trotignon, 2020]
- Even-hole-free graphs of bounded degree have bounded treewidth [Abrishami, Chudnovsky, Vušković, 2020]

Even-hole-free graphs with no H -minor

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
Even-hole-free graphs with no H-minor for some graph H have bounded treewidth. (This is actually proven for (theta, prism)-free graphs.)

- This provides another proof that planar ehf graphs have bounded treewidth.
- For the proof, we develop an "induced wall theorem" for graphs excluding fixed minor.
- From this, we derive that ehf graphs excluding fixed minor have bounded treewidth.

Even-hole-free graphs with no H -minor

Theorem (Induced wall theorem for graphs excluding H-minor) If G is H-minor-free with $t w(G) \geq f_{H}(k)$, then G contains a $(k \times k)$-wall or the line graph of a chordless $k \times k$-wall as an induced subgraph.

Figure: A (3×3)-wall and the line graph of chordless (3×3)-wall

Even-hole-free graphs with no H -minor

Theorem (Fomin, Golovach, Thilikos, 2011)
For every H, there exists a constant $c_{H}>0$ and an integer k s.t. for every connected H-minor free graph G with $t w(G) \geq c_{H} \cdot k^{2}, G$ contains either Γ_{k} or Π_{k} as a contraction.

Figure: Γ_{6} and Π_{6}

Even-hole-free graphs of bounded degree

Conjecture (Aboulker, Adler, Kim, S., Trotignon, 2020)
Even-hole-free graphs with bounded degree have bounded treewidth.
We prove the following cases:

- Subcubic ehf graphs have treewidth at most 3
- Approach: a full structure theorem for subcubic (theta, prism)-free graphs (every graph is either simple or it has a "nice" separator which yields boundedness on the treewidth).
- Pyramid-free ehf graphs of degree ≤ 4
- Approach: a combination of structural properties to show K_{6}-minor-freeness.
- $t w(G) \leq f_{K_{6}}(3)$, with f as in the induced grid theorem.

Figure: Pyramid

Structure theorem of subcubic even-hole-free graphs

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
Let G be a (theta, prism)-free subcubic graph. Then either:

- G is a basic graph; or
- G has a clique separator of size at most 2; or
- G has a proper separator.

Figure: Basic graphs and proper separator

Treewidth of even-hole-free graphs (a proof)

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
Subcubic even-hole-free graphs have treewidth ≤ 3.
Sketch of proof.

- Every basic graph has treewidth at most 3.
- "Gluing" along a clique and proper gluing preserve treewidth to be ≤ 3.

Tw of (even hole, pyramid)-free graphs of max degree 4

Recall that we prove the following:
Theorem (Aboulker, Adler, E. Kim, S., Trotignon, 2020)
Every (even hole, pyramid)-free graph of maximum degree 4 has treewidth $<f_{K_{6}}(3)$.

- f is the bound given in the 'induced grid theorem'
- The core of the proof: If G is (even hole, pyramid)-free graph of maximum degree at most 4 , then G contains no K_{6}-minor.

Theorem (S., Trotignon, 2021+)
(Even hole, pyramid)-free graphs of max degree 4 have treewidth ≤ 4.
Sketch of proof. Similar to the subcubic case, with more basic graphs.

Even-hole-free graphs of bounded degree

The "bounded degree \Rightarrow bounded treewidth" conjecture has been proven! (using another technique: balanced separator)

Theorem (Abrishami, Chudnovsky, Vušković, 2020)
Ehf graphs of bounded degree have bounded treewidth. (This is actually proven for a superclass of ehf graphs.)

Open problems

Motivation: grid-minor theorem of Robertson and Seymour There is a function f such that if $t w(G)>f(k)$, then G contains (as an induced subgraph) one of the following:

- a subdivision of a $(k \times k)$-wall
- line graph of a subdivision of a $(k \times k)$-wall
- a vertex of degree at least k

References

睩 P．Aboulker，I．Adler，E．J．Kim，N．L．D．Sintiari，and N．Trotignon．
On the tree－width of even－hole－free graphs．
CoRR，abs／2008．05504， 2020.
國 M．Pilipczuk，N．L．D．Sintiari，S．Thomassé，and N．Trotignon．
（Theta，triangle）－free and（even hole， K_{4} ）－free graphs．Part 2 ：A bound on treewidth．
CoRR，abs／1906．10998， 2019.
國 N．L．D．Sintiari and N．Trotignon．
（Theta，triangle）－free and（even hole， K_{4} ）－free graphs．Part 1 ：Layered wheels． CoRR，abs／1906．10998， 2019.

The End

